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Abstract. The method of stochastic quantization of Parisi–Wu is extended to include spinor fields obeying
the generalized statistics of order two consistent with the weak locality requirement. Appropriate Langevin
and Fokker–Planck equations are constructed using paragrassmann variables, which give rise to two fields
with different masses in the equilibrium limit, in agreement with the results of the canonical quantization
procedure. The connection between the stochastic quantization method and conventional Euclidean field
theory is established through Klein transformations.

1 Introduction

It is well known in quantum mechanics that in four dimen-
sions, if the interchange of two particles does not lead to
a new state, then the particles must satisfy either Fermi–
Dirac or Bose–Einstein statistics depending upon the sym-
metry character of the wave function. On the other hand,
if such an interchange does lead to a new state, then the
particles would satisfy “parastatistics” – statistics more
general than Fermi or Bose statistics, and the Schrödinger
N -body wave functions for such systems, although
quantum-mechanically acceptable, will be neither sym-
metric nor antisymmetric [1]. Applying these ideas, Green-
berg [2] suggested that quarks could be parafermions of
order three, the order of the statistics providing an alter-
native to explicit colour symmetry.

Quantization of systems obeying parastatistics using
canonical and path integral methods is an old subject and
has been discussed in detail in [3] and references therein.

Parisi and Wu introduced their method of stochastic
quantization [4] as an alternative to the path integral for-
malism. Their method has been applied so far to quan-
tize scalar fields [4], ordinary Fermi fields [5], gauge fields
[4,6], gravity [7], and parafermi fields which are of odd
orders satisfying the locality condition of the weak form
and those of any order satisfying the locality condition of
the strong form [8]. The pathological case of order two
parafermi fields was not discussed in [8].

In the Parisi–Wu scheme [9,10], one introduces a fifth
dimension called the fictitious time, in addition to
the usual space-time dimensions in the corresponding
Euclidean field theory and postulates a non-equilibrium
stochastic Langevin dynamics for the system. In the limit
of the fictitious time going to infinity, corresponding to the
equilibrium limit of the stochastic system, the usual Eu-
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clidean field theory is reproduced. This is effected by first
proving the equivalence of the Langevin equation with the
corresponding Fokker–Planck equation.

In this paper it is shown how to extend the Parisi–Wu
method to include parafermi fields of order two consistent
with the weak locality requirement in four space-time di-
mensions. In order to achieve this, we modify both the
Langevin equation as well as the corresponding Fokker–
Planck equation in an appropriate manner and show that
one can reproduce with these modified equations, the same
result for the propagator as is obtained with the canonical
method.

It is known that the normal Fermi–Dirac bilinear com-
mutation rules for spinor field operators ψ(x) and ψ̄(x)
satisfy the following trilinear commutation rules obtained
from the Heisenberg equations of motion:

[ψ(x), [ψ†(y), ψ†(z)]] =2δ4(x − y)ψ†(z)−2δ4(x − z)ψ†(y),

[ψ(x), [ψ†(y), ψ(z)]] = 2δ4(x − y)ψ(z),
[ψ(x), [ψ(y), ψ(z)]] = 0, (1)

where x, y and z denote space-time variables. In terms of
the creation and the annihilation operators, these trilinear
relations assume the form

[bi, [b†j , b†k]] = 2δijb†k − 2δikb†j ,

[bi, [b†j , bk]] = 2δijbk,
[bi, [bj , bk]] = 0, (2)

However, there are a host of other possibilities [1] which
also satisfy these trilinear relations. These may be repre-
sented by the operators bi

α which satisfy commutation
relations of the anomalous kind:

[biα, bjα]+ = [biα
†
, bj

α†]+ = 0,

[biα, bjα
†]+ = δij ,
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[biα, bjβ
†
]− = [biα, bjβ ]− = 0 (α �= β). (3)

The biα are called the Green components of bi of order p:

bi =
p∑

α=1

bi
α, (4)

where the indices α, β are known as Green indices. Fields
whose creation and annihilation operators obey the rela-
tions (3) are called parafermi fields. Equations (3) may be
concisely written as

[biα, bjβ
†
]−ναβ

= δijδαβ ,

[biα, bjβ ]−ναβ
= 0, (5)

where

ναβ =

{
−1 if α = β,

+1 if α �= β.

It was shown in [8] that parafermi fields of order greater
than two can be stochastically quantized starting from the
following Langevin equations:

∂ψ(x, t)
∂t

= − δS

δψ̄(x, t)
+ η(x, t),

∂ψ̄(x, t)
∂t

= − δS

δψ(x, t)
+ η̄(x, t), (6)

where t denotes the fictitious time, x includes all the space-
time variables, ψ(x, t) and ψ̄(x, t) are independent para-
grassmann fields and η(x, t) and η̄(x, t) are independent
paragrassmann random noise sources. The action was
taken to be bilinear in the fields:

S[ψ, ψ̄] =
∫

dx
1
2
[ψ̄,Kψ]−, (7)

where K may in general contain derivative operators,
scalar fields, γ-matrices, and the fields ψ and ψ̄ neither
commute nor anticommute, but constitute p Green com-
ponents

ψ(x, t) =
p∑

α=1

ψα(x, t), ψ̄(x, t) =
p∑

α=1

ψ̄α(x, t), (8)

satisfying the anomalous commutation relations

[ψα(x, t), ψα(x′, t′)]+ = [ψα(x, t), ψ̄α(x′, t′)]+
= [ψ̄α(x, t), ψ̄α(x′, t′)]+ = 0,

[ψα(x, t), ψβ(x′, t′)]− = [ψα(x, t), ψ̄β(x′, t′)]−
= [ψ̄α(x, t), ψ̄β(x′, t′)]− = 0, α �= β. (9)

In the following sections we construct the Langevin equa-
tions for parafermi fields of order two satisfying the weak
locality requirement and prove its equivalence to its cor-
responding Fokker–Planck equation. Finally, we show the
equivalence of the equations we have constructed to the
standard Euclidean field theory in the equilibrium limit,
through Klein transformations.

2 Quantization of parafermi fields
of order two

Unlike the fermion case, any parafermion action cannot be
cast in the form given in (7). The general form of the ac-
tion for a parafield of any order is dictated by the locality
condition [3].

The possible forms observables can take in a quantum
field theory are severely restricted by the requirement that
the theory be local. For an observable F (V ) (given as a
functional of the field operator ψ̂(x), where x ∈ V ) defined
in the spatial region V , and another observable F ′(V ′) de-
fined similarly for a spatial region V ′, the locality condi-
tion of the weak form dictates that the measurements of
F (V ) and F ′(V ′) can be performed independently at the
respective spatial regions V and V ′:

[F (V ), F ′(V ′)] = 0, for V ∼ V ′, (10)

where V ∼ V ′ denotes the fact that V and V ′ are spatially
far apart.

The strong locality condition on the other hand implies
a relation such as

[ψ(y), F (V )] = 0, for y ∼ V, (11)

according to which the measurement of F (V ) can be made
independently of whether any particles exist at other
points y which are spatially distant from V .

An action having the form (7) satisfies the strong lo-
cality condition for a parafermi field of any order and the
weak locality condition for a parafermi field of odd order
[3].

It was shown by Ohnuki and Kamefuchi [3] that for
parafermi fields of order p = 2, the most general form
of the action in four dimensions consistent with the weak
locality requirement is

S
(±)
E =

1
2

∫
d4x{−[ψ̄(x), (i /∇ − m)ψ]−

± κ[ψ̄(x), ψ(x)]+}. (12)

They showed that the state-vector space divides up into
even and odd sectors defined with respect to the parity of
the eigenvalues of the number operator N :

N ≡ 1
2

∫
d3x[ψ†(x), ψ(x)], (13)

satisfying N |0〉 = 0, |0〉 denoting the vacuum state, and
that these sectors are completely separated from each
other. S(+) and S(−) in (12) denote the Euclidean ac-
tion in the even and the odd sector respectively and κ is
a non-vanishing real parameter. They also showed that a
parafermi field of order two was equivalent to two ordi-
nary Fermi fields of masses (m ± κ) and they used their
results to describe the electron and the muon by a charged
parafermi field of order two, and the neutrino pair νe and
νµ by a neutral parafermi field of order two.

Because of the presence of the anticommutator term in
the action, the Langevin equations (6) are not applicable
for this order.
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We postulate the following Langevin equations for the
Green components of the parafermi fields of order two
satisfying the weak locality condition:

∂ψα(x, t)
∂t

= −
∑
β

θαβ
δSE[ψ, ψ̄]
δψ̄β(x, t)

+ ηα(x, t),

∂ψ̄α(x, t)
∂t

= −
∑
β

ναβ
δSE[ψ, ψ̄]
δψβ(x, t)

+ η̄α(x, t), (14)

where

ναβ =

{
−1 if α = β,

+1 if α �= β.

and
θαβ = ναβ + 2δαβ . (15)

In the summation in the first term on the right-hand side
of (14), β spans all values, covering both α = β as well as
α �= β. The fields ψα(x, t) and ψ̄α(x, t) are paragrassman-
nians satisfying (9). ηα(x, t) and η̄α(x, t) are paragrass-
mann gaussian random noise sources with the correlation
properties

〈ηα(x, t)〉 = 〈η̄α(x, t)〉 = 0,
〈ηα(x, t)η̄α(y, t′)〉 = − 〈η̄α(y, t′)ηα(x, t)〉

= 2δ(x − y)δ(t − t′),〈
ηα(x, t)η̄β(y, t′)

〉
=

〈
η̄β(y, t′)ηα(x, t)

〉
= 0, α �= β,

〈ηα(x, t)ηα(y, t′)〉 = 〈η̄α(x, t)η̄α(y, t′)〉
= − 〈ηα(y, t′)ηα(x, t)〉 = 0,〈

ηα(x, t)ηβ(y, t′)
〉
=

〈
η̄α(x, t)η̄β(y, t′)

〉
=

〈
ηβ(y, t′)ηα(x, t)

〉
= 0, α �= β, etc. (16)

It is important to observe that in (14), while the left-
hand sides are time derivatives of the fields with respect
to the Green component α, the right-hand sides contain
functional derivatives of the Euclidean action with respect
to the Green index β �= α, as well as with respect to β = α.
Thus, the time variation for the Green component α = 1
receives contributions from both α = 1, and from β = 2.

In the Langevin approach, the quantum correlation
functions are obtained by taking the t → ∞ limit of the
stochastic average of the fields〈

ψ(x1, t)ψ(x2, t) . . . ψ̄(xn, t)
〉
ηη̄

, (17)

where the angular bracket denotes the stochastic average
of a function f(η, η̄) with respect to the random variables
η and η̄:

〈f(η, η̄)〉η,η̄ (18)

=

∫
dη̄dηf(η, η̄) exp

{
−1
2

∫
d4xdtη̄(x, t)η(x, t)

}
∫

dη̄dη exp
{

−1
2

∫
d4xdtη̄(x, t)η(x, t)

} .

In Euclidean field theory the Green functions are re-
garded as moments or averages weighted with a probabil-
ity distribution e−SE[ψ̄,ψ]. In the Parisi–Wu formalism, the
non-equilibrium stochastic process described by a proba-
bility distribution P [ψ, ψ̄, t] and the Langevin dynamics
described above evolves in this fictitious (or fifth) time
through the Fokker–Planck equation:

∂P [ψ, ψ̄, t]
∂t

= −HFPP [ψ, ψ̄, t], (19)

where HFP is the Fokker–Planck hamiltonian. In order to
prove that P [ψ, ψ̄, t] relaxes to the quantum distribution
e−SE[ψ̄,ψ] in the equilibrium limit t → ∞, one must show
that HFP is at least positive semi-definite.
We shall show that the Fokker–Planck equation which is
equivalent to the Langevin equation constructed in (14) is
given by

∂P [ψ, ψ̄, t]
∂t

=
∑
α

∫
d4x

∑
β

{
θαβ

δ

δψ̄α

(
δS[ψ̄, ψ]
δψβ

+ δαβ
δ

δψβ

)

+ναβ
δ

δψβ

(
δS[ψ̄, ψ]
δψ̄α

+ δαβ
δ

δψ̄α

)}
P [ψ, ψ̄, t], (20)

where the sum over α outside the integral on the right-
hand side is performed at the end and gives the Fokker–
Planck equation for the full parafermi field from its Green
components. The equivalence with the Langevin equation
(14) is proved in Sect. 4 by looking at the stochastic aver-
age of the variation in the fictitious time of an arbitrary
functional F of ψ and ψ̄. Applying the Langevin equations
(14) one can write

〈
∂F [ψ, ψ̄]

∂t

〉
ηη̄

=
∑
α

∫
d4x

[〈
∂ψα

∂t

δF [ψ, ψ̄]
δψα

〉
ηη̄

+
〈
∂ψ̄α

∂t

δF [ψ, ψ̄]
δψ̄α

〉
ηη̄

]

=
∑
α

∫
d4x


−

∑
β

θαβ

〈
δSE[ψ, ψ̄]
δψ̄β(x, t)

δF [ψ, ψ̄]
δψα

〉
ηη̄

−
∑
β

〈
ναβ

δSE[ψ, ψ̄]
δψβ(x, t)

δF [ψ, ψ̄]
δψ̄α

〉
ηη̄

+
〈
ηα(x, t)

δF [ψ, ψ̄]
δψα

〉
ηη̄

+
〈
η̄α(x, t)

δF [ψ, ψ̄]
δψ̄α

〉
ηη̄

]
. (21)

In order to evaluate these averages, we prove the following
theorem.
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3 Novikov’s theorem
for paragrassmann variables

The proof depends upon a probability distribution over
the Green components ξ̄αi and ξβi of independent para-
grassmann variables ξ̄i and ξi

P (ξ, ξ̄, t) = exp


−

∑
i,j

∑
α,β

ξ̄αi Aijξ
β
j


. (22)

We define the average of a function F of ξ̄i and ξi by

〈F 〉 =
∫ ∏

i

dξ̄idξiF e−
∑

i,j ξ̄iAijξj , (23)

where 〈
ξiξ̄k

〉
= (A−1)ik. (24)

Our aim is to show that

〈ξαi F 〉 =
∑
k

〈
ξαi ξ̄

β
k

〉〈 ∂F

∂ξ̄βk

〉
,

〈
ξ̄αi F

〉
=

∑
k

ναβ

〈
∂F

∂ξβk

〉〈
ξβk ξ̄

α
i

〉
. (25)

Using (24), these can be rewritten as

∑
k

Aik 〈ξαkF 〉 =
〈

∂F

∂ξ̄βi

〉
,

∑
k

〈
ξ̄αkF

〉
Aki = ναβ

〈
∂F

∂ξβk

〉
. (26)

Consider the left-hand side of the first of the equations
(26):

∑
k

Aik 〈ξαkF 〉 =
∫ ∏

i

dξ̄idξiAikξαkFP (ξ, ξ̄)

=
∫ ∏

i

dξ̄idξiP(F )AikξαkP (ξ, ξ̄)

= −
∫ ∏

i

dξ̄idξiP(F )
∂

∂ξ̄βk
P (ξ, ξ̄)

=
∫ ∏

i

dξ̄idξi
∂F

∂ξ̄βk
P (ξ, ξ̄) =

〈
∂F

∂ξ̄βi

〉
, (27)

where P(F ) is obtained from F on changing the signs of
the ξαi ’s and ξ̄βi ’s in F . Now consider the left-hand side of
the second equation in (26)∑
k

〈ξαi F 〉Aik

=
∫ ∏

i

dξ̄idξiξαi F exp


−

∑
i,j

∑
γ,δ

ξ̄γi Aijξ
δ
j


Aik

=
∫ ∏

i

dξ̄idξiP(F )ξαi exp


−

∑
i,j

∑
γ,δ

ξ̄γi Aijξ
δ
j


Aik

= −
∫ ∏

i

dξ̄idξiP(F )


 ∂

∂ξδj
exp


−

∑
i,j

∑
γ,δ

ξ̄γi Aijξ
δ
j






×δjkδγανγδ

=
∫ ∏

i

dξ̄idξiναδ
∂F

∂ξδk


exp


−

∑
i,k

∑
γ,δ

ξ̄αi Aikξ
δ
k






= ναβ

〈
∂F

∂ξβk

〉
. (28)

Equations (27) and (28) are the results we set out to prove.

4 Equivalence between the Langevin
and the Fokker–Planck formalisms

In order to establish connection between the Langevin and
the Fokker–Planck formalisms, the averages in the two
approaches are identified:

〈
F [ψ, ψ̄]

〉
ηη̄

=
∫

Dψ̄DψF [ψ, ψ̄]P [ψ, ψ̄, t]

≡ 〈
F [ψ, ψ̄]

〉
P
. (29)

It follows from (21), (27) and (28) that

〈
∂F [ψ, ψ̄]

∂t

〉
ηη̄

=
∑
α

∫
d4xDψ̄(x)Dψ(x)F [ψ, ψ̄]

×

δαγ δ2P [ψ, ψ̄, t]

δψ̄γ(x)δψα(x)
+ νγαδαγ

δ2P [ψ, ψ̄, t]
δψα(x)δψ̄γ(x)

+
∑
β

ναβ
δ

δψα

(
δSE[ψ, ψ̄]

δψ̄β
P [ψ, ψ̄, t]

)

+
∑
β

θαβ
δ

δψ̄β

(
δSE[ψ, ψ̄]

δψα
P [ψ, ψ̄, t]

) . (30)

Since F is an arbitrary function of ψ and ψ̄, and using the
fact that

〈
∂F [ψ, ψ̄]

∂t

〉
ηη̄

=
∫

Dψ̄DψF [ψ, ψ̄]
∂P [ψ, ψ̄, t]

∂t
, (31)

we obtain the Fokker–Planck equation (20).
We now apply the Langevin and Fokker–Planck equa-

tions constructed in (14) and (20) to free parafermi fields
of order two satisfying the weak locality condition. The
classical Euclidean action in the even sector is
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S
(+)
E =

1
2

∫
d4xdt

×
{

−
∑
α

[ψ̄α(x, t), (i /∇ − m)ψα(x, t)]−

+
∑
α,β

′

κ[ψ̄α(x, t), ψβ(x, t)]+


 , (32)

where the prime over the summation in the second term
indicates that α �= β.

Performing a variation of the action with respect to
the fields ψα(x, t) and ψ̄α(x, t) and substituting these back
into the Langevin equations (14), we obtain

∂ψα(x, t)
∂t

= (i /∇ − m − κ)ψα(x, t) + ηα(x, t),

∂ψ̄α(x, t)
∂t

= −ψ̄α(x, t)(i
←
/∇ +m+ κ) + η̄α(x, t).

(33)

For the initial conditions

ψα(k, 0) = ψ̄α(k, 0) = 0, (34)

their solution in momentum space is given by

ψα(k, t) =
∫

dt1e−( �k+m+κ)(t−t1)θ(t − t1)ηα(k, t1),

ψ̄α(k′, t′) =
∫

dt1η̄α(k′, t1)e−(−�k′+m+κ)(t′−t1)θ(t′ − t1).

(35)

From this one finds that the stochastic propagator for the
order two parafermi field in the even sector is, after per-
forming a summation over all the Green components in
the end,〈
ψ(k, t)ψ̄(k′, t′)

〉
=

∑
α,β

〈
ψα(k, t)ψ̄β(k′, t′)

〉
(36)

=
∑
α,β

δαβ
δ(k + k′)

(� k +m+ κ)

×
(
e−( �k+m+κ)|t−t′| − e−( �k+m+κ)(t+t′)

)
.

Setting t′ = t we obtain in the equilibrium limit t → ∞
the quantum propagator

lim
t→∞

∑
α,β

〈
ψα(k, t)ψ̄β(k′, t)

〉

=
2∑

α=1

δ(k + k′)
(� k +m+ κ)

=
2δ(k + k′)

(� k +m+ κ)
. (37)

Similarly one obtains for the quantum propagator for an
order two parafermi field in the odd sector, the result

lim
t→∞

〈
ψ(k, t)ψ̄(k′, t)

〉
= lim

t→∞

∑
α,β

〈
ψα(k, t)ψ̄β(k′, t)

〉

=
2δ(k + k′)

(� k +m − κ)
. (38)

Thus we see that a parafermi field of order two gives rise
to two fields of masses (m + κ) and (m − κ), a result
which is in agreement with that obtained from the canon-
ical quantization procedure. It is easy to confirm that the
same results for the propagators are obtained with the
Fokker–Planck equation (20).

5 Equivalence of the modified stochastic
equations to Euclidean field theory
in the equilibrium limit

In order to prove that the stochastic averages obtained
from the modified Langevin equations (14) and the modi-
fied Fokker–Planck equation (20) relax to the quantum av-
erages in the steady state limit, one has to show that the
Fokker–Planck Hamiltonian HFP is indeed positive defi-
nite. To prove this for a parafermi field of order two, it
suffices to use the known result that such a field in fact
describes two ordinary Fermi fields of masses (m+κ) and
(m − κ) through Klein transformations. This was shown
by Ohnuki and Kamefuchi [3] by introducing a non-local
Klein operator K1

2 , which enables the parafermi field ψ(x)
to be written in terms of two ordinary Fermi fields φα(x),
(α = 1, 2):

ψ(x) = φ(1)(x) − iK1
2φ

(2)(x),

ψ†(x) = φ(1)†(x) − iK1
2φ

(2)†(x), (39)

where K1
2 ≡ (−1)N , N being the number operator. Let-

ting

Φ(1)(x) ≡ 1√
2
(φ(1)(x) + iφ(2)(x)),

Φ(2)(x) ≡ 1√
2
(φ(1)(x) − iφ(2)(x)), (40)

the total action for the parafermi field may be thought of
as the sum of two different actions S(1) and S(2) describing
the fields Φ(1) and Φ(2) respectively:

SE = S(1) + S(2),

S(1) = −1
2

∫
d4x[Φ̄(1), (i� ∇ − m − κ)Φ(1)]−

=
∫

d4xΦ̄(1)K1Φ
(1),

S(2) = −1
2

∫
d4x[Φ̄(2), (i� ∇ − m+ κ)Φ(2)]−

=
∫

d4xΦ̄(2)K2Φ
(2), (41)

with

K1 = −(i� ∇ − m − κ),
K2 = −(i� ∇ − m+ κ). (42)
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The fields Φ(i), Φ̄(i), (i = 1, 2) satisfy the ordinary bilinear
commutation rules

[Φ(i)
m , Φ̄(i)†

n ]+ = δmn,

[Φ(i)
m , Φ̄(i)

n ]+ = 0, etc., (43)

where m and n are spinor indices.
Keeping in mind the fact that for an order two para-

fermi field, the two fields Φ(1) and Φ(2) are mutually inclu-
sive, i.e, the presence of one of the Φ(i) fields necessarily
implies the presence of the other one also, the total prob-
ability P [Φ(1), Φ(2), Φ̄(1), Φ̄(2), t] of finding the parafermi
system in the given configuration can be written as

P [Φ(1), Φ(2), Φ̄(1), Φ̄(2), t]

= P [Φ(1), Φ̄(1), t] + P [Φ(2), Φ̄(2), t]. (44)

The Fokker–Planck equation for the parafermi field can
then be written as

∂P

∂t
= −HFP1P1 − HFP2P2 = −HFPP, (45)

where

HFPi
= −

[
δ

δΦ̄(i)

(
δ

δΦ(i) +
δS

δΦ(i)

)

− δ

δΦ(i)

(
δ

δΦ̄(i) +
δS

δΦ̄(i)

)]
(i = 1, 2), (46)

which on applying (41) becomes

HFPi = −
[

δ

δΦ̄(i)

(
δ

δΦ(i) − Ki
T Φ̄(i)

)

− δ

δΦ(i)

(
δ

δΦ̄(i) +K1Φ
(i)
)]

(i = 1, 2). (47)

The grassmann fields Φ(k), Φ̄(k) are formally defined in
terms of an infinite number of grassmann numbers ξi, ξ̄i
as follows:

Φ(k)(x) =
∞∑
i=1

fi(x)ξi, Φ̄(k)(x) =
∞∑
i=1

f∗i (x)ξ̄i (k = 1, 2).

(48)
fi(x) are a complete set of orthonormal functions. The
fermion actions S(1), S(2) can be written in terms of these
independent paragrassmann variables ξi, ξ̄i as

S(1,2) =
∑
i,j

ξ̄iK1,2ij
ξj , (49)

where

K1,2ij
=
∫

d4xf∗i (x)K1,2fj(x). (50)

In view of the definition (48) for Grassmann fields, the
operators δ/δΦ̄(i) and δ/δΦ(i) are defined by

δ

δΦ(k) =
∑
i

f∗i (x)
∂

∂ξi
,

δ

δΦ̄(k) =
∑
i

fi(x)
∂

∂ξ̄i
(k = 1, 2), (51)

so that the Fokker–Planck hamiltonian (47) takes the form

HFPk
= −

∑
i

[
δ

δξ̄i

(
δ

δξi
−
∑
l

Kkli
ξ̄l

)

− δ

δξi

(
δ

δξ̄i
+
∑
l

Kkil
ξl

)]
(k = 1, 2). (52)

Following the work of Fukai et al. [5], we introduce the
following abstract representations:

ξi, ξ̄i → Ai, Bi,

∂

∂ξi
,
∂

∂ξ̄i
→ A†i , B

†
i , (53)

and the coherent states of Fermi operators:

|ξ, ξ̄〉 =
∞∏
j=1

(1 − ξjA
†
j)
∞∏
j=1

(1 − ξ̄jB
†
j )|0〉. (54)

These coherent states form a complete orthonormal set
[11]. Here A†i and B†i are the normal Fermi creation oper-
ators satisfying the algebra

[Ai, A
†
i ]+ = [Bi, B

†
i ]+ = 1,

[Ai, Aj ]+ = [Bi, Bj ]+ = 0, (55)

and the destruction operators Ai and Bi annihilate the
vacuum |0〉:

Ai|0〉 = Bi|0〉 = 0. (56)

Having simplified the original parafield system consider-
ably by writing it in terms of ordinary Fermi fields by
the above procedure, we can now show that the Fokker–
Planck hamiltonian (45), (46) is indeed positive definite.
Equation (45) can be written in the form of an eigenvalue
equation:

HFPχn =
∑
n

λnχn. (57)

In terms of the eigenfunctions χn and the corresponding
eigenvalues of the operator HFP, the general solution of
(44) is given by

P =
∑
n

χne−λnt. (58)

In order to examine the spectrum of HFP, we regard the
probability distribution Pk(ξ, ξ̄, t) as the representative of
an abstract vector |Pk(t)〉 in the coherent state represen-
tation, so that the Fokker–Planck equation for the field
Φ(k) assumes the form

∂

∂t
|Pk(t)〉 = −HFPk

|Pk(t)〉 (k = 1, 2), (59)
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where

HFPk
= −

∑
i

[
B†i

(
A†i −

∑
l

Kkli
Bl

)

− A†i

(
B†i −

∑
l

Kkil
Al

)]
. (60)

For diagonalizing the eigenvalue equation corresponding
to (59), we perform the similarity transformation

ĤFPk
= exp

∑
ij

(A†iKkil

−1B†l )HFPk

× exp


−

∑
ij

A†iKkil

−1B†l


, (61)

under which

A†i → A†i , B†i → B†i ,

Ai → Ai − Kkil

−1B†l , Bi → Bi − Kkli

−1A†l . (62)

We find that the operator ĤFPk
is given by

ĤFPk
=
∑
i

[B†i (K
T
k )ilBl +A†iKkil

Al]. (63)

It is evident from this that as long as Kk is a positive
definite operator, ĤFPk

, and hence also HFPk
are both

positive definite. This in turn implies that HFP for the en-
tire parafermi system is positive definite. Therefore, when
the limit t → ∞ is taken, every solution P (ξ, ξ̄, t) in (58)
of the Fokker–Planck equation (57) approaches the eigen-
function of ĤFP corresponding to the zero eigenvalue pro-
vided this eigenvalue is non-degenerate and there is a gap
in the spectrum of HFP above the zero eigenvalue.

We have thus shown that the stochastic quantization
method with the modified Langevin and the Fokker–
Planck equations (14) and (20) respectively, for an order
two parafermi field leads to the usual quantum field theory
in the equilibrium limit t → ∞. Although a parafermi field
of order two has been discussed here, it must be pointed
out that the modified Langevin equation (14) as well as
the modified Fokker–Planck equation (20) can both be
applied to parafermi fields of all orders. For a parafermi
field of odd order, the off-diagonal terms on the right-
hand sides of (14) and (20), that is, terms corresponding
to Green index α �= β will not contribute, there being only
commutator terms in the action for such fields.

6 Discussion

We have shown in this work how to extend the stochas-
tic quantization method of Parisi–Wu to include in four
space-time dimensions, parafermi fields of order two satis-
fying the weak locality condition, by modifying the
Langevin and the corresponding Fokker–Planck equations
in an appropriate manner. It is shown that in the equilib-
rium limit t → ∞, the usual quantum field theory for an
order two parafermi field is recovered, giving rise to two
fields of masses (m+κ) and (m−κ). As mentioned towards
the end of the previous section, the modified Langevin and
Fokker–Planck equations constructed here can be applied
also to parafermi fields of all orders. As far as we know,
stochastic quantization of parabose fields has not been
done yet – we have confined this work to the case of order
two parafermi fields for the sake of completeness while dis-
cussing parafermi fields of all orders within the Parisi–Wu
framework – it is interesting to know how to modify the
stochastic equations to handle both commutator and anti-
commutator terms in the classical action simultaneously.
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